Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May 3;277(18):15819-27.
doi: 10.1074/jbc.M200154200. Epub 2002 Feb 11.

Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation

Affiliations
Free article

Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation

Fei Yu et al. J Biol Chem. .
Free article

Abstract

Galectin-3 is a multifunctional oncogenic protein found in the nucleus and cytoplasm and also the extracellular milieu. Although recent studies demonstrated an anti-apoptotic activity of galectin-3, neither the functional site nor the mechanism of how galectin-3 regulates apoptosis is known. In this study, we examined the subcellular localization of galectin-3 during apoptosis and investigated its anti-apoptotic actions. We report that galectin-3 translocates to the perinuclear membrane following a variety of apoptotic stimuli. Confocal microscopy and biochemical analysis revealed that galectin-3 is enriched in the mitochondria and prevents mitochondrial damage and cytochrome c release. Using a yeast two-hybrid system, we screened for galectin-3-interacting proteins that regulate galectin-3 localization and anti-apoptotic activity. Synexin, a Ca(2+)- and phospholipid-binding protein, was one of the proteins identified. We confirmed direct interaction between galectin-3 and synexin by glutathione S-transferase pull-down assay in vitro. We showed that galectin-3 failed to translocate to the perinuclear membranes when expression of synexin was down-regulated using an oligodeoxyribonucleotide complementary to the synexin mRNA, suggesting a role for synexin in galectin-3 trafficking. Furthermore, synexin down-regulation abolished anti-apoptotic activity of galectin-3. Taken together, these results suggest that synexin mediates galectin-3 translocation to the perinuclear mitochondrial membranes, where it regulates mitochondrial integrity critical for apoptosis regulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources