Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 20;124(7):1354-63.
doi: 10.1021/ja017248o.

Diversity-oriented synthesis of biaryl-containing medium rings using a one bead/one stock solution platform

Affiliations

Diversity-oriented synthesis of biaryl-containing medium rings using a one bead/one stock solution platform

David R Spring et al. J Am Chem Soc. .

Abstract

Diversity-oriented synthesis of structurally complex and diverse small molecules can be used as the first step in a process to explore cellular and organismal pathways. The success of this process is likely going to be dependent on advances in the synthesis of small molecules having natural product-like structures in an efficient and stereoselective manner. The development, scope, and mechanism of the oxidation of organocuprates was investigated and exploited in the atropdiastereoselective synthesis of biaryl-containing medium rings (9-, 10-, and 11-membered rings). The methodology was performed on high-capacity, large polystyrene beads by metalating aryl bromides with i-PrBu(2)MgLi, followed by transmetalating with CuCN x 2LiBr and then oxidizing with 1,3-dinitrobenzene, and was used in a diversity-oriented synthesis of biaryl-containing medium rings (library total theoretical maximum 1412 members). The high capacity beads were arrayed into 384-well plates and, using a process optimized during the development of a one bead/one stock solution technology platform, converted into arrays of stock solutions, with each stock solution containing largely one compound. These stock solutions were used in numerous phenotypic and protein-binding assays. The process described outlines a pathway that we feel will contribute to a comprehensive and systematic chemical approach to exploring biology (chemical genetics).

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources