Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 20;124(7):1364-77.
doi: 10.1021/ja011069p.

A new class of functionalized terpyridyl ligands as building blocks for photosensitized supramolecular architectures. Synthesis, structural, and electronic characterizations

Affiliations

A new class of functionalized terpyridyl ligands as building blocks for photosensitized supramolecular architectures. Synthesis, structural, and electronic characterizations

Philippe Lainé et al. J Am Chem Soc. .

Abstract

A new class of triarylpyridinio-derivatized [4'-(p-phenyl)(n)]terpyridyl ligands, R(1)(2)R(2)TP(+)-(p)(n)tpy, was designed as a novel category of electron-acceptor (A)-substituted proto-photosensitizing molecules. The first elements of this versatile family of ligands (i.e., n = 0, 1 and R(1) = R(2) = H), H(3)TP(+)-tpy and H(3)TP(+)-ptpy, were synthesized as well as their Ru(II) and Os(II) complexes to form the related acceptor-functionalized M(tpy)(2)(2+) and M(ptpy)(2)(2+) photosensitizer components denoted P0 and P1, respectively. Within the P1 series of compounds, an electron-donor (D)-substituted ligand, Me(2)N-ptpy, was also involved and associated with H(3)TP(+)-ptpy, giving rise to various combinations (up to 10 polyad systems). The two resulting series of nanometer-scale rigid rod-like photosensitized supramolecular architectures are of potential interest for long-range photoinduced electron transfer purposes. The main structural features of such supermolecules were determined by comparing the results obtained from (i) single-crystal X-ray analysis of the two free ligands together with that of the P0A/Ru and P1A(2)/Ru complexes and (ii) a detailed solution (1)H NMR study of the P0 series and, more specifically, of the P0A/Ru dyad (ROESY experiment). It is shown that the pseudoperpendicular conformation of the covalently linked A and P subunits found in the solid state is persistent in fluid medium; i.e., A is not conjugated with P (P0 and P1). The first insights regarding the consequences upon intercomponent couplings of combined substituent effects and conjugation (case of D-based polyads)-or absence of conjugation-are discussed in the light of ground-state electronic properties of the compounds.

PubMed Disclaimer

LinkOut - more resources