Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2002 Mar;92(3):1255-60.
doi: 10.1152/japplphysiol.00437.2001.

Oral [(13)C]glucose and endogenous energy substrate oxidation during prolonged treadmill running

Affiliations
Free article
Clinical Trial

Oral [(13)C]glucose and endogenous energy substrate oxidation during prolonged treadmill running

Stéphane Couture et al. J Appl Physiol (1985). 2002 Mar.
Free article

Abstract

Six male subjects were studied during running exercise (120 min, 69% maximal oxygen consumption) with ingestion of a placebo or 3.5 g/kg of [(13)C]glucose (approximately 2 g/min). Indirect respiratory calorimetry corrected for urea excretion in urine and sweat, production of (13)CO(2) at the mouth, and changes in plasma glucose (13)C/(12)C were used to compute energy substrate oxidation. The oxidation rate of exogenous glucose increased from 1.02 at minute 60 to 1.22 g/min at minute 120 providing approximately 24 and 33% of the energy yield (%En). Glucose ingestion did not modify protein oxidation, which provided approximately 4-5%En, but significantly increased glucose oxidation by approximately 7%, reduced lipid oxidation by approximately 16%, and markedly reduced endogenous glucose oxidation (1.25 vs. 2.21 g/min between minutes 80 and 120, respectively). The oxidation rate of glucose released from the liver (0.38 and 0.47 g/min, or 10-13%En at minutes 60 and 120, respectively), and of plasma glucose (1.30-1.69 g/min, or 34 and 45%En and 50 and 75% of glucose oxidation) significantly increased from minutes 60 to 120, whereas the oxidation of muscle glycogen significantly decreased (1.28 to 0.58 g of glucose/min, or 34 and 16%En and 50 and 25% of glucose oxidation). These results indicate that, during moderate prolonged running exercise, ingestion of a very large amount of glucose significantly reduces endogenous glucose oxidation, thus sparing muscle and/or liver glycogen stores.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources