Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Dec:14:69-75.
doi: 10.1177/08959374000140011101.

Heterogeneity of high-molecular-weight human salivary mucins

Affiliations
Review

Heterogeneity of high-molecular-weight human salivary mucins

G D Offner et al. Adv Dent Res. 2000 Dec.

Abstract

The existence of high-molecular-weight glycoproteins in saliva and salivary secretions has been recognized for nearly 30 years. These proteins, called mucins, are essential for oral health and perform many diverse functions in the oral cavity. Mucins have been intensively studied, and much has been learned about their biochemical properties and their interactions with oral micro-organisms and other salivary proteins. In the past several years, the major high-molecular-weight mucin in salivary secretions has been identified as MUC5B, one of a family of 11 human mucin gene products expressed in tissue-specific patterns in the gastrointestinal, respiratory, and reproductive tracts. MUC5B is one of four gel-forming mucins which exist as multimeric proteins with molecular weights greater than 20-40 million daltons. The heavily glycosylated mucin multimers form viscous layers which protect underlying epithelial surfaces from microbial, mechanical, and chemical assault. Another class of mucin molecules, the membrane-bound mucins, is structurally and functionally distinct from the gel-forming mucins. These proteins do not form multimers and can exist as both secreted and membrane-bound forms, with the latter anchored to epithelial cell membranes through a short membrane-spanning domain. In the present work, we show that two of the membrane-bound mucins, MUC1 and MUC4, are expressed in all major human salivary glands as well as in buccal epithelial cells. While the functions of these mucins in the oral environment are not understood, it is possible that they form a structural framework on the cell surface which not only is cytoprotective, but also may serve as a scaffold upon which MUC5B, and possibly other salivary proteins, assemble.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources