Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;125(Pt 2):421-35.
doi: 10.1093/brain/awf037.

Oscillatory mechanism in primary sensory neurones

Affiliations

Oscillatory mechanism in primary sensory neurones

Ron Amir et al. Brain. 2002 Feb.

Abstract

Ectopic spike activity, generated at low levels in intact sensory dorsal root ganglia and intensified following axotomy, is an important cause of neuropathic pain. The spikes are triggered by subthreshold membrane potential oscillations. The depolarizing phase of oscillation sinusoids is due to a phasic voltage-sensitive Na(+) conductance (gNa(+)). Here we examine the repolarizing phase for which K(+) conductance (gK(+)) is implicated. In vivo, gK(+) blockers have excitatory effects inconsistent with the elimination of oscillations. Indeed, using excised dorsal root ganglia in vitro, we found that gK(+) block does not eliminate oscillations; on the contrary, it has a variety of facilitatory effects. However, oscillations were eliminated by shifting the K(+) reversal potential so as to neutralize voltage-insensitive K(+) leak channels. Based on these data, we propose a novel oscillatory model: oscillation sinusoids are due to reciprocation between a phasically activating voltage-dependent, tetrodotoxin-sensitive Na(+) conductance and passive, voltage-independent K(+) leak. In drug-free media, voltage-sensitive K(+) channels act to suppress oscillations and increase their frequency. Numerical simulations support this model and account for the effects of gK(+) block. Oscillations in dorsal root ganglia neurones appear to be based on the simplest possible configuration of ionic conductances compatible with sustained high frequency oscillatory behaviour. The oscillatory mechanism might be exploited in the search for novel analgesic drugs.

PubMed Disclaimer

Publication types