Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001:443 Suppl 1:S97-102.
doi: 10.1007/s004240100653. Epub 2001 Jul 7.

Nucleoside diphosphate kinase--a component of the [Na(+)]- and [Cl(-)]-sensitive phosphorylation cascade in human and murine airway epithelium

Affiliations

Nucleoside diphosphate kinase--a component of the [Na(+)]- and [Cl(-)]-sensitive phosphorylation cascade in human and murine airway epithelium

K J Treharne et al. Pflugers Arch. 2001.

Abstract

We have shown that proteins within apically enriched fractions of human nasal respiratory epithelium vary their phosphohistidine content with ambient [Cl(-)] and other anion concentrations. This membrane-delimited phosphorylation cascade includes a multifunctional protein histidine kinase - nucleoside diphosphate kinase (NDPK). NDPK is itself a cascade component in both human and ovine airway, the self-phosphorylation of which is inhibited selectively by [Na(+)] in the presence of ATP (but not GTP). These findings led us to propose the existence of a dual anion-/cation-controlled phosphorylation-based "sensor" bound to the apical membrane. The present study showed that this cascade uses ATP to phosphorylate a group of proteins above 45 kDa (p45-group, identities unknown). Additionally, the Cl(-) dependence of ATP (but not GTP) phosphorylation is conditional on phosphatase activity and that interactions exist between the ATP- and GTP-phosphorylated components of the cascade under Cl(-)-free conditions. As a prelude to studies in cystic fibrosis (CF) mice, we showed in the present study that NDPK is present and functionally active in normal murine airway. Since NDPK is essential for UTP synthesis and regulates fetal gut development, G proteins, K(+) channels, neutrophil-mediated inflammation and pancreatic secretion, the presence of ion-regulated NDPK protein in mouse airway epithelium might aid understanding of the pathogenesis of CF.

PubMed Disclaimer

Publication types

LinkOut - more resources