Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 1;243(1):65-80.
doi: 10.1006/dbio.2001.0542.

Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated

Affiliations
Free article

Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated

Richard Paul Sorrentino et al. Dev Biol. .
Free article

Abstract

The mechanisms by which an organism becomes immune competent during its development are largely unknown. When infected by eggs of parasitic wasps, Drosophila larvae mount a complex cellular immune reaction in which specialized host blood cells, lamellocytes and crystal cells, are activated and recruited to build a capsule around the parasite egg to block its development. Here, we report that parasitization by the wasp Leptopilina boulardi leads to a dramatic increase in the number of both lamellocytes and crystal cells in the Drosophila larval lymph gland. Furthermore, a limited burst of mitosis follows shortly after infection, suggesting that both cell division and differentiation of lymph gland hemocytes are required for encapsulation. These changes, observed in the lymph glands of third-instar, but never of second-instar hosts, are almost always accompanied by dispersal of the anterior lobes themselves. To confirm a link between host development and immune competence, we infected mutant hosts in which development is blocked during larval or late larval stages. We found that, in genetic backgrounds where ecdysone levels are low (ecdysoneless) or ecdysone signaling is blocked (nonpupariating allele of the transcription factor broad), the encapsulation response is severely compromised. In the third-instar ecdysoneless hosts, postinfection mitotic amplification in the lymph glands is absent and there is a reduction in crystal cell maturation and postinfection circulating lamellocyte concentration. These results suggest that an ecdysone-activated pathway potentiates precursors of effector cell types to respond to parasitization by proliferation and differentiation. We propose that, by affecting a specific pool of hematopoietic precursors, this pathway thus confers immune capacity to third-instar larvae.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources