Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 30;314(3):543-61.
doi: 10.1006/jmbi.2001.5146.

Solution structure and backbone dynamics of an engineered arginine-rich subdomain 2 of the hepatitis C virus NS3 RNA helicase

Affiliations

Solution structure and backbone dynamics of an engineered arginine-rich subdomain 2 of the hepatitis C virus NS3 RNA helicase

D Liu et al. J Mol Biol. .

Abstract

The NS3 protein of the hepatitis C virus (HCV) is a 631 amino acid residue bifunctional enzyme with a serine protease localized to the N-terminal 181 residues and an RNA helicase located in the C-terminal 450 residues. The HCV NS3 RNA helicase consists of three well-defined subdomains which all contribute to its helicase activity. The second subdomain of the HCV helicase is flexibly linked to the remainder of the NS3 protein and could undergo rigid-body movements during the unwinding of double-stranded RNA. It also contains several motifs that are implicated in RNA binding and in coupling NTP hydrolysis to nucleic acid unwinding and translocation. As part of our efforts to use NMR techniques to assist in deciphering the enzyme's structure-function relationships and developing specific small molecule inhibitors, we have determined the solution structure of an engineered subdomain 2 of the NS3 RNA helicase of HCV, d(2Delta)-HCVh, and studied the backbone dynamics of this protein by (15)N-relaxation experiments using a model-free approach. The NMR studies on this 142-residue construct reveal that overall subdomain 2 of the HCV helicase is globular and well structured in solution even in the absence of the remaining parts of the NS3 protein. Its solution structure is very similar to the corresponding parts in the X-ray structures of the HCV NS3 helicase domain and intact bifunctional HCV NS3 protein. Slow hydrogen-deuterium exchange rates map to a well-structured, stable hydrophobic core region away from the subdomain interfaces. In contrast, the regions facing the subdomain interfaces in the HCV NS3 helicase domain are less well structured in d(2Delta)-HCVh, show fast hydrogen-deuterium exchange rates, and the analysis of the dynamic properties of d(2Delta)-HCVh reveals that these regions of the protein show distinct dynamical features. In particular, residues in motif V, which may be involved in transducing allosteric effects of nucleotide binding and hydrolysis on RNA binding, exhibit slow conformational exchange on the milli- to microsecond time-scale. The intrinsic conformational flexibility of this loop region may facilitate conformational changes required for helicase function.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Associated data

LinkOut - more resources