Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;269(3):859-67.
doi: 10.1046/j.0014-2956.2001.02719.x.

The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus

Affiliations
Free article

The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus

Orna Avidan et al. Eur J Biochem. 2002 Feb.
Free article

Abstract

We have recently expressed in bacteria the enzymatically active reverse transcriptase (RT) of bovine leukemia virus (BLV) [Perach, M. & Hizi, A. (1999) Virology 259, 176-189]. In the present study, we have studied in vitro two features of the DNA polymerase activity of BLV RT, the processivity of DNA synthesis and the fidelity of DNA synthesis. These properties were compared with those of the well-studied RTs of human immunodeficiency virus type 1 (HIV-1) and murine leukaemia virus (MLV). Both the elongation of the DNA template and the processivity of DNA synthesis exhibited by BLV RT are impaired relative to the other two RTs studied. Two parameters of fidelity were studied, the capacity to incorporate incorrect nucleotides at the 3' end of the nascent DNA strand and the ability to extend these 3' end mispairs. BLV RT shows a fidelity of misinsertion higher than that of HIV-1 RT and lower than that of MLV RT. The pattern of mispair elongation by BLV RT suggests that the in vitro error proneness of BLV RT is closer to that of HIV-1 RT. These fidelity properties are discussed in the context of the various retroviral RTs studied so far.

PubMed Disclaimer

MeSH terms

LinkOut - more resources