Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;53(368):429-37.
doi: 10.1093/jexbot/53.368.429.

Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica)

Affiliations

Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica)

Benedetto Ruperti et al. J Exp Bot. 2002 Mar.

Abstract

Ethylene-responsive genes from peach (Prunus persica, L. Batsch) were isolated by differential screening of a cDNA library constructed from abscission zones in which cell separation had been evoked by treatment with the ethylene analogue propylene. DNA and deduced protein sequences of four selected clones, termed Prunus persica Abscission zone (PpAz), revealed homology to thaumatin-like proteins (PpAz8 and PpAz44), to proteins belonging to the PR4 class of pathogenesis-related (PR) proteins (PpAz89), and to fungal and plant beta-D-xylosidases (PpAz152). Expression analyses conducted on embrioctomized and CEPA-treated fruitlets as well as on fruit explants have shown that PpAz8, PpAz44 and PpAz89 are preferentially transcribed in the cells of the fruit abscission zone rather than in the non-zone tissues. The PpAz152 transcript showed a different accumulation pattern being consistently and promptly induced by wounding and only slightly stimulated by propylene. By contrast, a complex pattern of transcript accumulation was found for the four genes in response to the wounding of leaves and during organ development and senescence. Based on this evidence, the existence of multiple regulatory pathways underlying the differential expression of the four PpAz genes in the different tissues and physiological processes is hypothesized.

PubMed Disclaimer

MeSH terms

LinkOut - more resources