Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;61(2):697-704.
doi: 10.1046/j.1523-1755.2002.00150.x.

Hemodynamic changes during hemodialysis: role of nitric oxide and endothelin

Affiliations
Free article

Hemodynamic changes during hemodialysis: role of nitric oxide and endothelin

Dominic S C Raj et al. Kidney Int. 2002 Feb.
Free article

Abstract

Background: Etiology of dialysis induced hypotension and hypertension remains speculative. There is mounting evidence that nitric oxide (NO) and endothelin (ET-1) may play a vital role in these hemodynamic changes. We examined the intradialytic dynamic changes in NO and ET-1 levels and their role in the pathogenesis of hypotension and rebound hypertension during hemodialysis (HD).

Methods: The serum nitrate + nitrite (NT), fractional exhaled NO concentration (FENO), L-arginine (L-Arg), NGNG-dimethyl-L-arginine (ADMA) and endothelin (ET-1) profiles were studied in 27 end-stage renal disease (ESRD) patients on HD and 6 matched controls. The ESRD patients were grouped according to their hemodynamic profile; Group I patients had stable BP throughout HD, Group II had dialysis-induced hypotension, and Group III had intradialytic rebound hypertension.

Results: Pre-dialysis FENO was significantly lower in the dialysis patients compared to controls (19.3 +/- 6.3 vs. 28.6 +/- 3.4 ppb, P < 0.002). Between the experimental groups, pre-dialysis FENO was significantly higher in Group II (24.1 +/- 6.7 ppb) compared to Group I (17.8 +/- 5.6 ppb) and Group III (16.1 +/- 4.2 ppb; P < 0.05). Post-dialysis, FENO increased significantly from the pre-dialysis values (19.3 +/- 6.3 vs. 22.6 +/- 7.9 ppb; P=0.001). Pre-dialysis NT (34.4 +/- 28.2 micromol/L/L) level was not significantly different from that of controls (30.2 +/- 12.3 micromol/L/L). Serum NT decreased from 34.4 +/- 28.2 micromol/L/L at initiation of dialysis to 10.0 +/- 7.4 micormol/L/L at end of dialysis (P < 0.001). NT concentration was comparable in all the three groups at all time points. Pre-dialysis L-Arg (105.3 +/- 25.2 vs. 93.7 +/- 6.0 micromol/L/L; P < 0.05) and ADMA levels were significantly higher in ESRD patients (4.0 +/- 1.8 vs. 0.9 +/- 0.2 micromol/L/L; P < 0.001) compared to controls. Dialysis resulted in significant reduction in L-Arg (105.3 +/- 25.2 vs. 86.8 +/- 19.8 micromol/L/L; P < 0.005) and ADMA (4.0 +/- 1.8 vs. 1.6 +/- 0.7 micromol/L/L; P < 0.001) concentrations. Pre-dialysis ET-1 levels were significantly higher in ESRD patients compared to the controls (8.0 +/- 1.9 vs. 12.7 +/- 4.1 pg/mL; P < 0.002), but were comparable in the three study groups. Post-dialysis ET-1 levels did not change significantly in Group I compared to pre-dialysis values (14.3 +/- 4.3 vs.15.0 +/- 2.4 pg/mL, P=NS). However, while the ET-1 concentration decreased significantly in Group II (12.0 +/- 4.0 vs. 8.7 +/- 1.8 pg/mL, P < 0.05), it increased in Group III from pre-dialysis levels (12.8 +/- 3.8 vs. 16.7 +/- 4.5 pg/mL, P=0.06).

Conclusion: Pre-dialysis FENO is elevated in patients with dialysis-induced hypotension and may be a more reliable than NT as a marker for endogenous NO activity in dialysis patients. Altered NO/ET-1 balance may be involved in the pathogenesis of rebound hypertension and hypotension during dialysis.

PubMed Disclaimer

Publication types