Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May;40(6):475-86.
doi: 10.1016/s0197-0186(01)00118-8.

Peripheral benzodiazepine receptors and mitochondrial function

Affiliations
Review

Peripheral benzodiazepine receptors and mitochondrial function

Pierre Casellas et al. Neurochem Int. 2002 May.

Abstract

For over 20 years, numerous investigations have focused on elucidating the function of the peripheral benzodiazepine receptor (PBR). This relatively small protein (18kDa) arouses great interest because of its association with numerous biological functions, including the regulation of cellular proliferation, immunomodulation, porphyrin transport and heme biosynthesis, anion transport, regulation of steroidogenesis and apoptosis. Although the receptor was first identified as a binding site for the benzodiazepine, diazepam, in peripheral organ systems, the PBR was subsequently found to be distinct from the central benzodiazepine receptor (CBR) in terms of its pharmacological profile, structure, subcellular localization, tissue distribution and physiological functions. The PBR is widely expressed throughout the body, with high densities found in steroid-producing tissues. In contrast, its expression in the CNS is restricted to ependymal cells and glia. The benzodiazepine Ro5-4864 and the isoquinoline carboxamide PK11195 exhibit nanomolar affinity for the PBR, and are the archtypic pharmacological tools for characterizing the receptor and its function. Primary among these functions are its regulation of steroidogenesis and apoptosis, which reflect its mitochondrial localization and involvement in oxidative processes. This review will evaluate the basic pharmacology and molecular biology of the PBR, and highlight its role in regulating mitochondrial function, the mitochondrial transmembrane potential and its sensitivity to reactive oxygen species (ROS), and neurosteroid synthesis, processes relevant to the pathogenesis of a number of neurological and neuropsychiatric disorders.

PubMed Disclaimer

Substances

LinkOut - more resources