Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May 3;277(18):16081-7.
doi: 10.1074/jbc.M108555200. Epub 2002 Feb 15.

Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells

Affiliations
Free article

Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells

Eric Camerer et al. J Biol Chem. .
Free article

Abstract

The coagulation protease Factor Xa (Xa)(1) triggers a variety of cellular responses that may be important for inflammatory reactions to tissue injury. Protease-activated receptors (PAR1, PAR2, and PAR4) can mediate Xa signaling in heterologous expression systems. However, other candidate Xa receptors have been described, and the extent to which one or more PARs account for Xa signaling in relevant differentiated cells is unknown. We examined Xa signaling in endothelial cells from wild-type and PAR-deficient mice. Wild-type endothelial cells responded to agonists for PAR1, PAR2, and PAR4. Relative to wild-type, Xa-triggered phosphoinositide hydrolysis was reduced by 60-75% in Par2 -/- endothelial cells, by 20-30% in Par1 -/- endothelial cells, and by approximately 90% in Par2 -/- endothelial cells treated with a PAR1 antagonist. Similar results were obtained when ERK1/2 phosphorylation was used to assess Xa signaling. Thus PAR2 is the main endogenous Xa receptor in these endothelial cell preparations and, together, PAR2 and PAR1 appear to account for approximately 90% of endothelial Xa signaling. By contrast, in fibroblasts, PAR1 by itself accounted for virtually all Xa-induced phosphoinositide hydrolysis. This information is critical for the design and interpretation of knockout mouse studies to probe the possible roles of Xa signaling in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources