Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;118(1):55-64.
doi: 10.1046/j.0022-202x.2001.01652.x.

Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo

Affiliations
Free article

Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo

Ursula Mirastschijski et al. J Invest Dermatol. 2002 Jan.
Free article

Abstract

Several matrix metalloproteinases and serine proteinases are upregulated in migrating keratinocytes during cutaneous wound repair. Single cell culture studies indicate the necessity for matrix metalloproteinases but not for serine proteinases in keratinocyte locomotion. To account for epithelial-mesenchymal interactions, an ex vivo human skin wound model was used to investigate the contribution of matrix metalloproteinases and serine proteinases to wound healing by treatment with broad-spectrum inhibitors of matrix metalloproteinases (BB-3103) or serine proteinases (aprotinin). Human skin explants with circular 3 mm superficial defects were incubated in culture medium without (controls) or with the proteinase inhibitors for 7 d. BB-3103 abrogated epithelialization (p < 0.001), whereas aprotinin-treated wounds and controls were covered with new epithelium. Lack of epithelialization was unlikely due to cytotoxicity because the matrix metalloproteinase inhibitor did neither influence viability of cultured epidermal keratinocytes nor apoptosis in wounds. Involvement of specific matrix metalloproteinases in epithelialization was analyzed by gelatin zymography, western blotting, immunohistochemistry, and in situ hybridization. Wound healing was accompanied by active matrix metalloproteinase-1 and increased active matrix metalloproteinase-2 but irrespectively of active matrix metalloproteinase-9. BB-3103 blocked activation of matrix metalloproteinase-2 and matrix metalloproteinase-9 but not of matrix metalloproteinase-1. Active matrix metalloproteinase-2 localized solely to the dermis, whereas matrix metalloproteinase-9 was consistently found in new epithelium. Membrane-type 1 matrix metalloproteinase was undetectable in wound keratinocytes. BB-3103 and aprotinin reduced tumor necrosis factor-alpha in media but did not appreciably alter amounts of other soluble regulators of matrix metalloproteinases and epithelialization. Our findings demonstrate that keratinocyte migration is associated with active matrix metalloproteinase-2 but occurs independently of serine proteinases and active matrix metalloproteinase-9 in fibrin-deficient skin wound healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms