Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1
- PMID: 11852100
- DOI: 10.1016/s0014-5793(02)02271-8
Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1
Abstract
The effects of temperature on the gamma-aminobutyric acid (GABA) uptake and on the presteady-state and transport-associated currents of the GABA cotransporter, rat gamma-aminobutyric acid transporter 1 (rGAT1), have been studied using heterologous oocyte expression and voltage-clamp. Increasing temperature from 15 to 30 degrees C increased GABA uptake, diminished the maximal value of the relaxation time constant of the presteady-state currents and increased the amplitude of the current associated with the transport of GABA. The curve of the presteady-state charge versus voltage was shifted toward negative potentials by increasing the temperature, while the maximal amount of charge (Q(max)) remained constant; the tau versus V curve was also negatively shifted by increasing temperatures. Analysis of the outward (alpha) and inward (beta) rate constants as functions of temperature showed that they are affected differently, with a Q(10)=3.4 for alpha and Q(10)=1.5 for beta. The different temperature coefficients of the rate constants account for the observed shifts. These observations are consistent with a charge moving mechanism based on a conformational change of the protein; the weaker temperature sensitivity of the inward rate constant suggests a rate-limiting diffusional component on this process.
Similar articles
-
Role of anion-cation interactions on the pre-steady-state currents of the rat Na(+)-Cl(-)-dependent GABA cotransporter rGAT1.J Physiol. 2002 Jun 1;541(Pt 2):343-50. doi: 10.1113/jphysiol.2001.013457. J Physiol. 2002. PMID: 12042343 Free PMC article.
-
The relation between charge movement and transport-associated currents in the rat GABA cotransporter rGAT1.J Physiol. 2002 Dec 15;545(3):739-50. doi: 10.1113/jphysiol.2002.026823. J Physiol. 2002. PMID: 12482883 Free PMC article.
-
Mutation K448E in the external loop 5 of rat GABA transporter rGAT1 induces pH sensitivity and alters substrate interactions.J Physiol. 2001 Oct 15;536(Pt 2):479-94. doi: 10.1111/j.1469-7793.2001.0479c.xd. J Physiol. 2001. PMID: 11600683 Free PMC article.
-
GABA and human spermatozoa: characterization and regulation of GABA transport proteins.Acta Physiol Scand Suppl. 1998 Nov;642:1-61. Acta Physiol Scand Suppl. 1998. PMID: 9853022 Review. No abstract available.
-
GABA transporter function in the horizontal cells of the skate.Prog Brain Res. 2001;131:267-75. doi: 10.1016/s0079-6123(01)31022-1. Prog Brain Res. 2001. PMID: 11420946 Review. No abstract available.
Cited by
-
Role of anion-cation interactions on the pre-steady-state currents of the rat Na(+)-Cl(-)-dependent GABA cotransporter rGAT1.J Physiol. 2002 Jun 1;541(Pt 2):343-50. doi: 10.1113/jphysiol.2001.013457. J Physiol. 2002. PMID: 12042343 Free PMC article.
-
GABA transporter lysine 448: a key residue for tricyclic antidepressants interaction.Cell Mol Life Sci. 2009 Dec;66(23):3797-808. doi: 10.1007/s00018-009-0153-9. Cell Mol Life Sci. 2009. PMID: 19756379 Free PMC article.
-
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models.J Comp Physiol B. 2017 Apr;187(3):395-462. doi: 10.1007/s00360-016-1044-7. Epub 2016 Nov 1. J Comp Physiol B. 2017. PMID: 27803975 Review.
-
Novel properties of a mouse gamma-aminobutyric acid transporter (GAT4).J Membr Biol. 2005 Jan;203(2):65-82. doi: 10.1007/s00232-004-0732-5. J Membr Biol. 2005. PMID: 15981712 Free PMC article.
-
Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step.Pflugers Arch. 2013 Sep;465(9):1261-79. doi: 10.1007/s00424-013-1261-9. Epub 2013 Mar 21. Pflugers Arch. 2013. PMID: 23515872
MeSH terms
Substances
LinkOut - more resources
Full Text Sources