Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Dec;11(6):523-35.
doi: 10.1142/S0129065701000941.

Automatic determination of radial basis functions: an immunity-based approach

Affiliations
Comparative Study

Automatic determination of radial basis functions: an immunity-based approach

L N de Castro et al. Int J Neural Syst. 2001 Dec.

Abstract

The appropriate operation of a radial basis function (RBF) neural network depends mainly upon an adequate choice of the parameters of its basis functions. The simplest approach to train an RBF network is to assume fixed radial basis functions defining the activation of the hidden units. Once the RBF parameters are fixed, the optimal set of output weights can be determined straightforwardly by using a linear least squares algorithm, which generally means reduction in the learning time as compared to the determination of all RBF network parameters using supervised learning. The main drawback of this strategy is the requirement of an efficient algorithm to determine the number, position, and dispersion of the RBFs. The approach proposed here is inspired by models derived from the vertebrate immune system, that will be shown to perform unsupervised cluster analysis. The algorithm is introduced and its performance is compared to that of the random, k-means center selection procedures and other results from the literature. By automatically defining the number of RBF centers, their positions and dispersions, the proposed method leads to parsimonious solutions. Simulation results are reported concerning regression and classification problems.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources