Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Sep;15(5):397-403.
doi: 10.1023/a:1013385305567.

Mechanism of action of Ca2+ sensitizers--update 2001

Affiliations
Review

Mechanism of action of Ca2+ sensitizers--update 2001

M Endoh. Cardiovasc Drugs Ther. 2001 Sep.

Abstract

Ca2+ sensitizers act on the central mechanism (Ca2+ binding affinity of troponin C) and/or downstream mechanisms (thin filament regulation of actin and direct action on crossbridge cycling) of cardiac E-C coupling. Ca2+ sensitizers have mechanistic and energetic advantages over the agents that act through the upstream mechanism (intracellular Ca2+ mobilization). Ca2+ sensitizers and the agents that act through cyclic AMP-mediated signaling process have been postulated to belong to different classes, however, recent experimental findings revealed that certain Ca2+ sensitizers, such as levosimendan, OR 1896 and UD-CG 212 Cl, require cyclic AMP-mediated signaling for induction of the Ca2+ sensitizing effect. No clinically available agents act primarily via Ca2+ sensitization, but the positive inotropic effect of pimobendan and levosimendan is partly due to an increase in myofilament Ca2+ sensitivity. These agents are the hybrid of Ca2+ sensitizer and PDE III inhibitor. The extent of contribution of Ca2+ sensitizing effect of these agents to the clinical effectiveness to improve the hemodynamics in patients with heart failure is uncertain. Nevertheless pieces of evidence have been accumulating that these agents with Ca2+ sensitizing effect are clinically more effective than the agents that act purely via the upstream mechanism.

PubMed Disclaimer

MeSH terms

LinkOut - more resources