Engineering the plastid genome of higher plants
- PMID: 11856614
- DOI: 10.1016/s1369-5266(02)00248-0
Engineering the plastid genome of higher plants
Abstract
The plastid genome of higher plants is an attractive target for engineering because it provides readily obtainable high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs and gene containment through the lack of pollen transmission. A chloroplast-based expression system that is suitable for the commercial production of recombinant proteins in tobacco leaves has been developed recently. This expression system includes vectors, expression cassettes and site-specific recombinases for the selective elimination of marker genes. Progress in expressing proteins that are biomedically relevant, in engineering metabolic pathways, and in manipulating photosynthesis and agronomic traits is discussed, as are the problems of implementing the technology in crops.
Similar articles
-
Breakthrough in chloroplast genetic engineering of agronomically important crops.Trends Biotechnol. 2005 May;23(5):238-45. doi: 10.1016/j.tibtech.2005.03.008. Trends Biotechnol. 2005. PMID: 15866001 Free PMC article. Review.
-
Plastid transformation in higher plants.Annu Rev Plant Biol. 2004;55:289-313. doi: 10.1146/annurev.arplant.55.031903.141633. Annu Rev Plant Biol. 2004. PMID: 15377222 Review.
-
New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants.Photochem Photobiol Sci. 2005 Dec;4(12):971-6. doi: 10.1039/b514699m. Epub 2005 Nov 4. Photochem Photobiol Sci. 2005. PMID: 16307109
-
Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.Biotechnol Adv. 2010 Nov-Dec;28(6):747-56. doi: 10.1016/j.biotechadv.2010.05.022. Epub 2010 Jun 4. Biotechnol Adv. 2010. PMID: 20685387 Review.
-
Plastid genetic engineering in Solanaceae.Protoplasma. 2012 Oct;249(4):981-99. doi: 10.1007/s00709-012-0391-9. Epub 2012 Mar 7. Protoplasma. 2012. PMID: 22395455 Free PMC article. Review.
Cited by
-
Phylogenetic analysis of Fritillaria cirrhosa D. Don and its closely related species based on complete chloroplast genomes.PeerJ. 2019 Aug 21;7:e7480. doi: 10.7717/peerj.7480. eCollection 2019. PeerJ. 2019. PMID: 31497389 Free PMC article.
-
Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea.Transgenic Res. 2003 Feb;12(1):115-22. doi: 10.1023/a:1022110402302. Transgenic Res. 2003. PMID: 12650530
-
The effect of different 3' untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco.Plant Mol Biol. 2011 Jul;76(3-5):385-96. doi: 10.1007/s11103-010-9689-1. Epub 2010 Sep 22. Plant Mol Biol. 2011. PMID: 20859755
-
The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth.Plant Physiol. 2008 Jan;146(1):83-96. doi: 10.1104/pp.107.109058. Epub 2007 Nov 9. Plant Physiol. 2008. PMID: 17993544 Free PMC article.
-
Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker.PLoS One. 2014 Jun 9;9(6):e98607. doi: 10.1371/journal.pone.0098607. eCollection 2014. PLoS One. 2014. PMID: 24911932 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources