Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;4(3):232-9.
doi: 10.1038/ncb759.

Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI

Affiliations

Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI

Miguel Angel Del Pozo et al. Nat Cell Biol. 2002 Mar.

Abstract

The proper function of Rho GTPases requires precise spatial and temporal regulation of effector interactions. Integrin-mediated cell adhesion modulates the interaction of GTP-Rac with its effectors by controlling GTP-Rac membrane targeting. Here, we show that the translocation of GTP-Rac to membranes is independent of effector interactions, but instead requires the polybasic sequence near the carboxyl terminus. Cdc42 also requires integrin-mediated adhesion for translocation to membranes. A recently developed fluorescence resonance energy transfer (FRET)-based assay yields the surprising result that, despite its uniform distribution, the interaction of activated V12-Rac with a soluble, cytoplasmic effector domain is enhanced at specific regions near cell edges and is induced locally by integrin stimulation. This enhancement requires Rac membrane targeting. We show that Rho-GDI, which associates with cytoplasmic GTP-Rac, blocks effector binding. Release of Rho-GDI after membrane translocation allows Rac to bind to effectors. Thus, Rho-GDI confers spatially restricted regulation of Rac-effector interactions.

PubMed Disclaimer

Publication types

MeSH terms

Substances