Structural requirements for high-affinity heparin binding: alanine scanning analysis of charged residues in the C-terminal domain of human extracellular superoxide dismutase
- PMID: 11863456
- DOI: 10.1021/bi011454r
Structural requirements for high-affinity heparin binding: alanine scanning analysis of charged residues in the C-terminal domain of human extracellular superoxide dismutase
Abstract
An essential property of human extracellular superoxide dismutase (hEC-SOD) is its affinity for heparin and heparan sulfate proteoglycans located on cell surfaces and in the connective tissue matrix. The C-terminal domain of hEC-SOD plays the major role in this interaction. This domain has an unusually high content of charged amino acids: six arginine, three lysine, and five glutamic acid residues. In this study, we used alanine scanning mutagenesis of charged amino acids in the C-terminal domain to elucidate the requirements for the heparin/heparan sulfate interaction. As a tool in this study, we used a fusion protein comprising the C-terminal domain of hEC-SOD fused to human carbonic anhydrase II (HCAII). The interaction studies were performed using the surface plasmon resonance technique and heparin-Sepharose chromatography. Replacement of the glutamic acid residues by alanine resulted, in all cases, in tighter binding. All alanine substitutions of basic amino acid residues, except one (R205A), reduced heparin affinity. The arginine and lysine residues in the cluster of basic amino acid residues (residues 210-215), the RK-cluster, are of critical importance for the binding to heparin, and arginine residues promote stronger interactions than lysine residues.
Similar articles
-
Characterization of the heparin-binding domain of human extracellular superoxide dismutase.Biochim Biophys Acta. 1997 Jun 20;1340(1):21-32. doi: 10.1016/s0167-4838(97)00024-1. Biochim Biophys Acta. 1997. PMID: 9217011
-
The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity.J Biol Chem. 1992 Sep 5;267(25):18205-9. J Biol Chem. 1992. PMID: 1517248
-
Characterization of heparin binding of human extracellular superoxide dismutase.Biochemistry. 2000 Jan 11;39(1):230-6. doi: 10.1021/bi991512x. Biochemistry. 2000. PMID: 10625498
-
Determination of the structural role of the N-terminal domain of human extracellular superoxide dismutase by use of protein fusions.Biochim Biophys Acta. 1996 Jan 4;1292(1):47-52. doi: 10.1016/0167-4838(95)00189-1. Biochim Biophys Acta. 1996. PMID: 8547348
-
Combinatorial alanine-scanning.Curr Opin Chem Biol. 2001 Jun;5(3):302-7. doi: 10.1016/s1367-5931(00)00206-4. Curr Opin Chem Biol. 2001. PMID: 11479122 Review.
Cited by
-
Genetically modified adenoviral vector with the protein transduction domain of Tat improves gene transfer to CAR-deficient cells.Biosci Rep. 2009 Apr;29(2):103-9. doi: 10.1042/BSR20080023. Biosci Rep. 2009. PMID: 18721127 Free PMC article.
-
The high concentration of Arg213-->Gly extracellular superoxide dismutase (EC-SOD) in plasma is caused by a reduction of both heparin and collagen affinities.Biochem J. 2005 Jan 15;385(Pt 2):427-32. doi: 10.1042/BJ20041218. Biochem J. 2005. PMID: 15362977 Free PMC article.
-
Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells.BMC Cancer. 2011 Mar 31;11:116. doi: 10.1186/1471-2407-11-116. BMC Cancer. 2011. PMID: 21453492 Free PMC article.
-
Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA.Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1321-35. doi: 10.1107/S1399004714002739. Epub 2014 Apr 30. Acta Crystallogr D Biol Crystallogr. 2014. PMID: 24816101 Free PMC article.
-
Peptide antimicrobial agents.Clin Microbiol Rev. 2006 Jul;19(3):491-511. doi: 10.1128/CMR.00056-05. Clin Microbiol Rev. 2006. PMID: 16847082 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials