Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;6(6):351-62.
doi: 10.1179/135100001101536535.

BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production

Affiliations
Free article

BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production

P A Amstad et al. Redox Rep. 2001.
Free article

Abstract

It has been hypothesized that programmed cell death is mediated, in part, through the formation of free radicals via oxidative pathways. Furthermore, it has been proposed that BCL-2 acts to inhibit cell death by interfering with the production of oxygen-derived free radicals induced by a wide variety of stimuli. In order to examine the antioxidant function of BCL-2, we transfected mouse epidermal cells JB6 clone 41 with the expression vector pD5-Neo-BCL-2 and studied the effect of BCL-2 overexpression on oxidant-induced cell death and on the production of reactive oxygen species. Compared to Neo control cells, BCL-2-expressing cells are more resistant to the killing and growth retardation induced by hydrogen peroxide, superoxide, or by the oxygen radical-generating quinone-containing compounds menadione, diaziquone and adriamycin. The latter compounds generate reactive oxygen species during bioreductive metabolism. In addition, the exposed cells die by necrosis rather than apoptosis. Hydroxyl radical levels generated by the quinone-containing agents were low in BCL-2-expressing JB6 cells compared to control Neo cells. BCL-2, however, does not change the activities of the major cellular antioxidant enzymes superoxide dismutase, catalase or glutathione peroxidase. On the other hand, the glutathione concentrations increased in BCL-2 overexpressing cells after oxidative challenge, while the opposite was true for control cells. Thus, our results suggest that BCL-2 inhibition of oxidant-induced cell death is mediated, at least in part, through an antioxidant pathway, and that this pathway involves glutathione.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources