Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jan;12(1):44-55.
doi: 10.1007/s00330-001-1161-9. Epub 2001 Oct 19.

Ultrasound of tendons and nerves

Affiliations
Review

Ultrasound of tendons and nerves

Carlo Martinoli et al. Eur Radiol. 2002 Jan.

Abstract

Tendons and nerves represent probably one of the best application of musculoskeletal US due to the high lesion detection rate and accuracy of US combined with its low cost, wide availability, and ease of use. The refinement of high-frequency broadband linear-array transducers, and sensitive color and power Doppler technology, have improved the ability of US to detect fine textural abnormalities of these structures as well as to identify a variety of pathological conditions. Characteristic echotextural patterns, closely resembling the histological ones, are typically depicted in these structures using high US frequencies. In tendon imaging, US can assess dislocations, degenerative changes and tendon tears, including intrasubstance tears, longitudinal splits, partial and complete rupture, inflammatory conditions and tendon tumors, as well as postoperative findings. In nerve imaging, US can support clinical and electrophysiological testing for detection of compressing lesions caused by nerve entrapment in a variety of osteofibrous tunnels of the limbs and extremities. Congenital anomalies, nerve tears, and neurogenic tumors can also be diagnosed. Overall, US is an effective technique for imaging tendons and nerves. In most cases, a focused US examination can be performed more rapidly and efficiently than MR imaging.

PubMed Disclaimer

MeSH terms

LinkOut - more resources