Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;10(3):218-25.
doi: 10.1053/joca.2001.0502.

Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism

Affiliations
Free article

Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism

M A DiMicco et al. Osteoarthritis Cartilage. 2002 Mar.
Free article

Abstract

Objectives: The objectives of this research were to determine whether the integrative repair of bovine cartilage explants was dependent on developmental stage, and whether observed differences in integration with developmental stage were related to deposition of newly synthesized collagen and lysyl oxidase-mediated collagen cross-linking.

Methods: Pairs of fetal, newborn calf, and adult bovine cartilage blocks were cultured in partial apposition for 2 weeks in medium supplemented with serum, ascorbate, and [3H]proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength in a single-lap shear configuration. Formation and stabilization of newly synthesized protein and collagen was investigated by determination of [3H]proline and [3H]hydroxyproline in tissue digests and guanidine extracts.

Results: Calf cartilage exhibited a relatively high integrative repair phenotype, achieving an adhesive strength that was three--four-fold that of adult or fetal specimens. The low and high integrative repair phenotypes appeared related in part to different levels of collagen biosynthesis, which was approximately four--five-fold higher in calf cartilage samples than in the adult. However, fetal cartilage also exhibited a high level of biosynthesis. The different integrative repair phenotypes were not associated with marked differences in the kinetics of chemical stabilization of newly synthesized collagen, as the proportion of incorporated [3H]proline and newly-formed [3H]hydroxyproline that was resistant to extraction by 4M guanidine-HCl following culture was similar for cartilage from all developmental stages. Integration of calf cartilage appeared to depend on lysyl oxidase-mediated collagen cross-link formation, since inclusion of beta-aminopropionitrile (BAPN) in the culture medium completely eliminated development of adhesive strength. BAPN treatment also increased the percentage of newly synthesized protein in the guanidine extracts from 10% to 36% of the total, and that of newly synthesized collagen from 2% to 20%, while having only slight inhibitory effects on overall protein and collagen biosynthesis.

Conclusion: The finding that cartilage exhibits enhanced integrative repair at a certain developmental stage suggests that it may ultimately be possible to enhance repair when needed in clinical situations.

PubMed Disclaimer

Publication types

LinkOut - more resources