Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 1;115(Pt 5):1005-15.
doi: 10.1242/jcs.115.5.1005.

Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells

Affiliations

Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells

Maria V Tsiper et al. J Cell Sci. .

Abstract

Laminins are important for Schwann cell basement membrane assembly and axonal function. In this study, we found that exogenous laminin-1, like neuromuscular laminins-2/4, formed two distinct extracellular matrices on Schwann cell surfaces, each facilitated by laminin polymerization. Assembly of one, a densely-distributed reticular matrix, was accompanied by a redistribution of cell-surface dystroglycan and cytoskeletal utrophin into matrix-receptor-cytoskeletal complexes. The other, a fibrillar matrix, accumulated in separate zones associated with pre-existing beta1-integrin arrays. The laminin-1 fragment E3 (LG-modules 4-5), which binds dystroglycan and heparin, inhibited reticular-matrix formation. By contrast, beta1-integrin blocking antibody (Ha2/5) prevented fibrillar assembly. Ultrastructural analysis revealed that laminin treatment induced the formation of a linear electron-dense extracellular matrix (lamina densa) separated from plasma membrane by a narrow lucent zone (lamina lucida). This structure was considerably reduced with non-polymerizing laminin, fully blocked by E3, and unaffected by Ha2/5. Although it formed in the absence of type IV collagen, it was nonetheless able to incorporate this collagen. Finally, cell competency to bind laminin and form a basement membrane was passage-dependent. We postulate that laminin induces the assembly of a basement membrane on competent cell surfaces probably mediated by anchorage through LG 4-5. Upon binding, laminin interacts with dystroglycan, mobilizes utrophin, and assembles a 'nascent' basement membrane, independent of integrin, that is completed by incorporation of type IV collagen. However, the fibrillar beta1-integrin dependent matrix is unlikely to be precursor to basement membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources