Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 8;67(5):1480-9.
doi: 10.1021/jo0107249.

One-pot two-step enzymatic coupling of pyrimidine bases to 2-deoxy-D-ribose-5-phosphate. A new strategy in the synthesis of stable isotope labeled deoxynucleosides

Affiliations

One-pot two-step enzymatic coupling of pyrimidine bases to 2-deoxy-D-ribose-5-phosphate. A new strategy in the synthesis of stable isotope labeled deoxynucleosides

N Ouwerkerk et al. J Org Chem. .

Abstract

The enzymatic synthesis of thymidine from 2-deoxy-D-ribose-5-phosphate is achieved, in a one-pot two-step reaction using phosphoribomutase (PRM) and commercially available thymidine phosphorylase (TP). In the first step the sugar-5-phosphate is enzymatically rearranged to alpha-2-deoxy-D-ribose-1-phosphate. Highly active PRM is easily obtained from genetically modified overproducing E. coli cells (12,000 units/84 mg protein) and is used without further purification. In the second step thymine is coupled to the sugar-1-phosphate. The thermodynamically unfavorable equilibrium is shifted to the product by addition of MnCl(2) to precipitate inorganic phosphate. In this way the overall yield of the beta-anomeric pure nucleoside increases from 14 to 60%. In contrast to uracil, cytosine is not accepted by TP as a substrate. Therefore, 2'-deoxy-cytidine is obtained by functional group transformations of the enzymatically prepared 2'-deoxy-uridine. The method has been demonstrated by the synthesis of [2',5'-(13)C(2)]- and [1',2',5'-(13)C(3)]thymidine as well as [1',2',5'-(13)C(3)]2'-deoxyuridine and [3',4'-(13)C(2)]2'-deoxycytidine. In addition the nucleoside bases thymine and uracil are tetralabeled at the (1,3-(15)N(2),2,4-(13)C(2))-atomic positions. All compounds are prepared without any scrambling or dilution of the labeled material and are thus obtained with a very high isotope enrichment (96-99%). In combination with the methods that have been developed earlier it is concluded that each of the (13)C- and (15)N-positions and combination of positions of the pyrimidine deoxynucleosides can be efficiently labeled starting from commercially available and highly (13)C- or (15)N-enriched formaldehyde, acetaldehyde, acetic acid, potassium cyanide, methylamine hydrochloride, and ammonia.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources