Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;15(3):219-24.
doi: 10.1067/mje.2002.115456.

Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study

Affiliations

Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study

Jan A Vierendeels et al. J Am Soc Echocardiogr. 2002 Mar.

Abstract

This study was designed to show the hydrodynamic mechanism of left ventricular (LV) flow wave propagation and to relate this propagated velocity to 2-dimensional (2D) color and color M-mode Doppler echocardiograms. A computer model is developed describing 3-dimensional axisymmetrical LV filling flow. The unsteady Navier-Stokes flow equations are solved in an LV truncated ellipsoid geometry with moving LV walls, including relaxation and compliance of the wall. The computed results confirm both intraventricular flow and pressure patterns during filling. Vortices are formed during the acceleration phases of the early and atrial filling waves. During the deceleration phases, the vortices are amplified and convected into the ventricle. The vortices are recognized on the derived 2D color echocardiograms as in vivo. The propagation of this vortex determines the propagation of the maximum velocity observed in the color M-mode Doppler echocardiogram. For pseudonormal filling of the left ventricle, the LV flow wave propagation velocity decreases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources