The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer
- PMID: 11875520
- DOI: 10.1038/nsb774
The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. Here we present the crystal structure of class II (coenzyme B12-dependent) ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii in the apo enzyme form and in complex with the B12 analog adeninylpentylcobalamin at 1.75 and 2.0 A resolution, respectively. This monomeric, allosterically regulated class II RNR retains all the key structural features associated with the catalytic and regulatory machinery of oligomeric RNRs. Surprisingly, the dimer interface responsible for effector binding in class I RNR is preserved through a single 130-residue insertion in the class II structure. Thus, L. leichmannii RNR is a paradigm for the simplest structural entity capable of ribonucleotide reduction, a reaction linking the RNA and DNA worlds.
Comment in
-
Effector regulation in a monomeric enzyme.Nat Struct Biol. 2002 Apr;9(4):236-8. doi: 10.1038/nsb0402-236. Nat Struct Biol. 2002. PMID: 11914727 No abstract available.
Similar articles
-
Effector regulation in a monomeric enzyme.Nat Struct Biol. 2002 Apr;9(4):236-8. doi: 10.1038/nsb0402-236. Nat Struct Biol. 2002. PMID: 11914727 No abstract available.
-
Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase.Nat Struct Mol Biol. 2004 Nov;11(11):1142-9. doi: 10.1038/nsmb838. Epub 2004 Oct 10. Nat Struct Mol Biol. 2004. PMID: 15475969
-
Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces: cross-regulation and physiological role in response to oxygen limitation.Mol Microbiol. 2004 Nov;54(4):1022-35. doi: 10.1111/j.1365-2958.2004.04325.x. Mol Microbiol. 2004. PMID: 15522084
-
Ribonucleotide reductases: the evolution of allosteric regulation.Arch Biochem Biophys. 2002 Jan 15;397(2):149-55. doi: 10.1006/abbi.2001.2637. Arch Biochem Biophys. 2002. PMID: 11795865 Review.
-
Ribonucleotide reductases: substrate specificity by allostery.Biochem Biophys Res Commun. 2010 May 21;396(1):19-23. doi: 10.1016/j.bbrc.2010.02.108. Biochem Biophys Res Commun. 2010. PMID: 20494104 Review.
Cited by
-
Resonance Raman spectroscopic study of the interaction between Co(II)rrinoids and the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri.J Biol Inorg Chem. 2016 Sep;21(5-6):669-81. doi: 10.1007/s00775-016-1371-x. Epub 2016 Jul 6. J Biol Inorg Chem. 2016. PMID: 27383231 Free PMC article.
-
The Zn center of the anaerobic ribonucleotide reductase from E. coli.J Biol Inorg Chem. 2009 Aug;14(6):923-33. doi: 10.1007/s00775-009-0505-9. Epub 2009 Apr 21. J Biol Inorg Chem. 2009. PMID: 19381696
-
Radicals in Biology: Your Life Is in Their Hands.J Am Chem Soc. 2021 Sep 1;143(34):13463-13472. doi: 10.1021/jacs.1c05952. Epub 2021 Aug 23. J Am Chem Soc. 2021. PMID: 34423635 Free PMC article.
-
Structural determinants and distribution of phosphate specificity in ribonucleotide reductases.J Biol Chem. 2021 Aug;297(2):101008. doi: 10.1016/j.jbc.2021.101008. Epub 2021 Jul 24. J Biol Chem. 2021. PMID: 34314684 Free PMC article.
-
A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.J Biol Chem. 2017 Nov 17;292(46):19044-19054. doi: 10.1074/jbc.M117.806331. Epub 2017 Oct 2. J Biol Chem. 2017. PMID: 28972190 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Other Literature Sources