Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Feb;58(2):123-37.
doi: 10.1007/s00253-001-0864-9.

Genetic tools for cyanobacteria

Affiliations
Review

Genetic tools for cyanobacteria

O A Koksharova et al. Appl Microbiol Biotechnol. 2002 Feb.

Abstract

Cyanobacteria are oxygenic photosynthetic bacteria that have been used increasingly to study diverse biological processes, including photosynthesis and its regulation; cell differentiation and N2 fixation; metabolism of nitrogen, carbon, and hydrogen; resistance to environmental stresses; and molecular evolution. Many vectors and other genetic tools have been developed for unicellular and filamentous strains of cyanobacteria. Transformation, electroporation, and conjugation are used for gene transfer. Diverse methods of mutagenesis allow the isolation of many sought-for kinds of mutants, including site-directed mutants of specific genes. Reporter genes permit measurement of the level of transcription of particular genes, and assays of transcription within individual colonies or within individual cells in a filament. Complete genomic sequences have been obtained for the unicellular cyanobacterium, Synechocystis sp. strain PCC 6803 and the filamentous, heterocyst-forming cyanobacterium, Anabaena sp. strain PCC 7120. Genomic sequence projects are under way for Nostoc punctiforme strain PCC 73102 (ATCC 29133) and strains of the unicellular genera, Synechococcus, Prochlorococcus, and Gloeobacter. Genomic sequence data provide the opportunity for global monitoring of changes in genetic expression at transcriptional and translational levels in response to variations in environmental conditions. The availability of genomic sequences accelerates the identification, study, modification and comparison of cyanobacterial genes, and facilitates analysis of evolutionary relationships, including the relationship of chloroplasts to ancient cyanobacteria. The many available genetic tools enhance the opportunities for possible biotechnological applications of cyanobacteria.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources