Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 12;41(10):3477-83.
doi: 10.1021/bi0119316.

cis-Retinol/androgen dehydrogenase, isozyme 3 (CRAD3): a short-chain dehydrogenase active in a reconstituted path of 9-cis-retinoic acid biosynthesis in intact cells

Affiliations

cis-Retinol/androgen dehydrogenase, isozyme 3 (CRAD3): a short-chain dehydrogenase active in a reconstituted path of 9-cis-retinoic acid biosynthesis in intact cells

Run Zhuang et al. Biochemistry. .

Abstract

9-cis-Retinoic acid activates retinoid X receptors, which serve as heterodimeric partners with other nuclear hormone receptors, yet the enzymology of its physiological generation remains unclear. Here, we report the identification and molecular/enzymatic characterization of a previously unknown member of the short-chain dehydrogenase/reductase family, CRAD3 (cis-retinoid/androgen dehydrogenase, type 3), which catalyzes the first step in 9-cis-retinoic acid biosynthesis, the conversion of 9-cis-retinol into 9-cis-retinal. CRAD3 shares amino acid similarity with other retinoid/steroid short-chain dehydrogenases/reductases: CRAD1, CRAD2, and RDH4. Relative to CRAD1, CRAD3 has greater 9-cis-retinol/all-trans-retinol discrimination and lower efficiency as an androgen dehydrogenase. CRAD3 has apparent efficiency (V/K(m)) for 9-cis-retinol about equivalent to that for CRAD1 and 3 orders of magnitude greater than that for RDH4. (CRAD2 does not recognize 9-cis-retinol as a substrate). CRAD3 contributes to 9-cis-retinoic acid production in intact cells, in conjunction with each of three retinal dehydrogenases that recognize 9-cis-retinal (RALDH1/AHD2, RALDH2, and ALDH12). Liver and kidney, two tissues reportedly with the highest concentrations of 9-cis-retinoids, show the most intense mRNA expression of CRAD3, but expression also occurs in testis, lung, small intestine, heart, and brain. These data are consistent with the participation of CRAD3 in the biogeneration of 9-cis-retinoic acid.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources