Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;15(3):553-60.
doi: 10.1046/j.0953-816x.2001.01876.x.

Glucocorticoids interact with the basolateral amygdala beta-adrenoceptor--cAMP/cAMP/PKA system in influencing memory consolidation

Affiliations

Glucocorticoids interact with the basolateral amygdala beta-adrenoceptor--cAMP/cAMP/PKA system in influencing memory consolidation

Benno Roozendaal et al. Eur J Neurosci. 2002 Feb.

Abstract

Infusion of a beta-adrenoceptor antagonist into the basolateral nucleus of the amygdala (BLA) blocks memory enhancement induced by systemic or intra-BLA administration of a glucocorticoid receptor (GR) agonist. As there is evidence that glucocorticoids interact with the noradrenergic signalling pathway in activating adenosine 3prime prime or minute,5prime prime or minute-cyclic monophosphate (cAMP), the present experiments examined whether glucocorticoids influence the beta-adrenoceptor--cAMP system in the BLA in modulating memory consolidation. Male, Sprague--Dawley rats received bilateral infusions of atenolol (a beta-adrenoceptor antagonist), prazosin (an alpha1-adrenoceptor antagonist) or Rp-cAMPS (a protein kinase A inhibitor) into the BLA 10 min before inhibitory avoidance training and immediate post-training intra-BLA infusions of the GR agonist, RU 28362. Atenolol and Rp-cAMPS, but not prazosin, blocked 48-h retention enhancement induced by RU 28362. A second series of experiments investigated whether a GR antagonist alters the effect of noradrenergic activation in the BLA on memory consolidation. Bilateral intra-BLA infusions of the GR antagonist, RU 38486, administered 10 min before inhibitory avoidance training completely blocked retention enhancement induced by alpha1-adrenoceptor activation and attenuated the dose--response effects of post-training intra-BLA infusions of clenbuterol (a beta-adrenoceptor agonist). However, the GR antagonist did not alter retention enhancement induced by post-training intra-BLA infusions of 8-Br-cAMP (a synthetic cAMP analogue). These findings suggest that glucocorticoids influence the efficacy of noradrenergic stimulation in the BLA on memory consolidation via an interaction with the beta-adrenoceptor--cAMP cascade, at a locus between the membrane-bound beta-adrenoceptor and the intracellular cAMP formation site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances