Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Nov-Dec;83(11-12):1009-22.
doi: 10.1016/s0300-9084(01)01349-9.

Developmentally programmed excision of internal DNA sequences in Paramecium aurelia

Affiliations
Review

Developmentally programmed excision of internal DNA sequences in Paramecium aurelia

A Gratias et al. Biochimie. 2001 Nov-Dec.

Abstract

The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5'-TA-3' dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60,000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources