Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 20;235(1-2):87-94.
doi: 10.1016/s0378-5173(01)00985-1.

Stomach-specific anti-H. pylori therapy. I: Preparation and characterization of tetracyline-loaded chitosan microspheres

Affiliations

Stomach-specific anti-H. pylori therapy. I: Preparation and characterization of tetracyline-loaded chitosan microspheres

Radi Hejazi et al. Int J Pharm. .

Abstract

The main objective of the study was to develop a stomach-specific drug delivery system to increase the efficacy of tetracycline against Helicobacter pylori. Chitosan microspheres were prepared by ionic cross-linking and precipitation with sodium sulfate. Two different methods were used for drug loading. In method I, tetracycline was mixed with chitosan solution before the simultaneous cross-linking and precipitation. In method II, the drug was incubated with pre-formed microspheres for 48 h. The cumulative amount of tetracycline that was released from chitosan microspheres and the stability of the drug was examined in different pH medium at 37 degrees C. Microspheres with a spherical shape and an average diameter of 2.0-3.0 microm were formed. When the drug was added to the polymer solution before cross-linking and precipitation only 8% (w/w) was optimally incorporated in the final microsphere formulation. When the drug was incubated with the pre-formed microspheres, on the other hand, a maximum of 69% (w/w) could be loaded. Thirty percent of tetracycline either in solution or when released from microspheres was found to degrade at pH 1.2 in 12 h. The preliminary results from this study suggest that chitosan microspheres can be used to incorporate antibiotic drugs and may be effective when administered locally in the stomach against H. pylori.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources