Sensitive fluorescent detection of protein on nylon membranes
- PMID: 11879918
- DOI: 10.1016/s0165-022x(01)00243-3
Sensitive fluorescent detection of protein on nylon membranes
Abstract
Detection of antigen immobilized on membranes, as in Western transfers and dot enzyme linked immunosorbent assays (ELISAs), often employ antibody-enzyme conjugates and chemiluminescent or precipitated colored reaction products. Although chemiluminescent markers are sensitive, they are time-consuming because of their required exposure to X-ray film and the presence of background artifacts sometimes limits their use. This report demonstrates that direct fluorescent detection technique using nylon membranes that has higher sensitivity than chemiluminescent methods is easier to perform and has a uniform, low background. An alkaline phosphatase conjugated antibody was compared with antibody conjugated to a fluorescent phycobiliprotein (allophycocyanin) for sensitivity in both Western transfers and dot ELISA assays using mouse IgG as the membrane-bound antigen. Direct fluorescent detection of antigen-antibody complexes on positively charged nylon membrane provided better sensitivity and lower background than similar conditions using enzyme amplification and chemiluminescent detection on either nylon or PVDF membranes. Processing time was reduced by the elimination of steps associated with substrate incubation, washing and X-ray film exposures required for chemiluminescence detection. These data support the view that direct fluorescent detection can represent a significant improvement in assay sensitivity and reduction in time compared with more traditional chemiluminescent detection techniques employed in the conduct of Western transfers and dot ELISA studies.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
