Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;282(4):C768-74.
doi: 10.1152/ajpcell.00494.2001.

Enhancement of L-type Ca(2+) current from neonatal mouse ventricular myocytes by constitutively active PKC-betaII

Affiliations
Free article

Enhancement of L-type Ca(2+) current from neonatal mouse ventricular myocytes by constitutively active PKC-betaII

Kris J Alden et al. Am J Physiol Cell Physiol. 2002 Apr.
Free article

Abstract

The cardiac L-type calcium current (I(Ca)) can be modified by activation of protein kinase C (PKC). However, the effect of PKC activation on I(Ca) is still controversial. Some studies have shown a decrease in current, whereas other studies have reported a biphasic effect (an increase followed by a decrease in current or vice versa). A possible explanation for the conflicting results is that several isoforms of PKC with opposing effects on I(Ca) were activated simultaneously. Here, we examined the influence of a single PKC isoform (PKC-betaII) on L-type calcium channels in isolation from other cardiac isoforms, using a transgenic mouse that conditionally expresses PKC-betaII. Ventricular cardiac myocytes were isolated from newborn mice and examined for expression of the transgene using single cell RT-PCR after I(Ca) recording. Cells expressing PKC-betaII showed a twofold increase in nifedipine-sensitive I(Ca). The PKC-betaII antagonist LY-379196 returned I(Ca) amplitude to levels found in non-PKC-betaII-expressing myocytes. The increase in I(Ca) was independent of Ca(v)1.2-subunit mRNA levels as determined by quantitative RT-PCR. Thus these data demonstrate that PKC-beta is a potent modulator of cardiac L-type calcium channels and that this specific isoform increases I(Ca) in neonatal ventricular myocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources