Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;282(4):F655-68.
doi: 10.1152/ajprenal.00220.2000.

Basolateral membrane Cl(-)-, Na(+)-, and K(+)-coupled base transport mechanisms in rat MTALH

Affiliations
Free article

Basolateral membrane Cl(-)-, Na(+)-, and K(+)-coupled base transport mechanisms in rat MTALH

Soline Bourgeois et al. Am J Physiol Renal Physiol. 2002 Apr.
Free article

Abstract

Mechanisms involved in basolateral HCO transport were examined in the in vitro microperfused rat medullary thick ascending limb of Henle (MTALH) by microfluorometric monitoring of cell pH. Removing peritubular Cl(-) induced a cellular alkalinization that was inhibited in the presence of peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and blunted in the absence of external CO(2)/HCO. The alkalinization elicited by removing peritubular Cl(-) persisted in the bilateral absence of Na(+), together with a voltage clamp. When studied in Cl(-)-free solutions, lowering peritubular pH induced a base efflux that was inhibited by peritubular DIDS or by the absence of external CO(2)/HCO. Removing peritubular Na(+) elicited a cellular acidification that was accounted for by stimulation of a DIDS- and ethylisopropylamiloride (EIPA)-insensitive Na(+)-HCO cotransport and inhibition of a basolateral Na(+)/H(+) exchange. Increasing bath K(+) induced an intracellular alkalinization that was inhibited in the absence of external CO(2)/HCO. At 2 mM, peritubular Ba(2+), which inhibits the K(+)-Cl(-) cotransport, did not induce any change in transepithelial voltage but elicited a cellular alkalinization and inhibited K(+)-induced cellular alkalinization, consistent with the presence of a basolateral, electroneutral Ba(2+)-sensitive K(+)-Cl(-) cotransport that may operate as a K(+)-HCO cotransport. This cotransport was inhibited in the peritubular presence of furosemide, [(dihydroindenyl)oxy]alkanoic acid, 5-nitro-2-(3-phenylpropylamino)benzoate, or DIDS. At least three distinct basolateral HCO transport mechanisms are functional under physiological conditions: electroneutral Cl(-)/HCO exchange, DIDS- and EIPA-insensitive Na(+)-HCO cotransport, and Ba(2+)-sensitive electroneutral K(+)-Cl(-)(HCO) cotransport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources