Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 8;90(4):377-9.
doi: 10.1161/01.res.0000012567.95445.55.

Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase--dependent pathway is cardioprotective

Affiliations
Free article

Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase--dependent pathway is cardioprotective

Haiyan Tong et al. Circ Res. .
Free article

Abstract

We previously reported that activation of phosphatidylinositol-3-kinase (PI3-kinase) is involved in ischemic preconditioning (PC). Our goal was to determine downstream targets of PI3-kinase. In perfused rat hearts, PC (4 cycles of 5 minutes of ischemia and 5 minutes of reflow) increased phosphorylation of glycogen synthase kinase-3beta (GSK-3beta), a downstream target of PI3-kinase and protein kinase B (PKB), an effect that was blocked by wortmannin. Because phosphorylation inactivates GSK-3beta, we examined whether PC-induced phosphorylation and inhibition of GSK-3beta is important in PC by using two inhibitors of GSK-3beta, lithium and SB 216763. Pretreatment of perfused rat hearts with lithium or SB 216763, before ischemia, mimicked the protective effects of PC; hearts treated with either lithium or SB 216763 had improved postischemic function and reduced infarct size. These findings indicate that inhibition of GSK-3beta is protective and that this PI3-kinase--dependent signaling pathway may play an important role in ischemic preconditioning.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources