Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar-Apr;33(2):128-35.
doi: 10.1016/s0188-4409(01)00376-9.

DNA damage and repair in lymphoblastoid cell lines from normal donors and fragile X syndrome patients

Affiliations

DNA damage and repair in lymphoblastoid cell lines from normal donors and fragile X syndrome patients

Tsu Shing Wang et al. Arch Med Res. 2002 Mar-Apr.

Abstract

Background: Because lymphocytes from fragile X patients have been reported as hypersensitive to bleomycin-induced chromatid breaks and because the number of trinucleotide repeats in families with fragile X syndrome has a propensity to expand, we have investigated the possibility that fragile X cells may be hypersensitive to DNA damage and have a lower capacity for DNA repair.

Methods: Lymphocytes from normal and fragile X syndrome donors were immortalized by Epstein-Barr virus transformation. Characteristics of fragile X syndrome including the folate-sensitive fragile site on chromosome Xq27.3, length of CGG repeat expansion, and FMRP expression in Epstein-Barr virus-transformed lymphoblastoid cell lines were analyzed by standard cytogenetic methods, Southern blot, and Western blot, respectively. Analysis of DNA damage and repair induced by hydrogen peroxide, bleomycin, ethyl methanesulfonate, 4-nitroquinoline-N-oxide, etoposide, and mitomycin C was carried out by single-cell gel electrophoresis assay (known as comet assay).

Results: Lymphoblastoid cell lines from fragile X donors had a folate-sensitive fragile site on chromosome Xq27.3, no or low FMRP expression, and expansion of the CGG repeat. Results of comet assay showed that fragile X cells were not more sensitive to mutagen-induced DNA strand breaks and did not have lower DNA repair capacity in comparison with normal cells. Furthermore, one fragile X cell line showed hyposensitivity to DNA strand breaks induced by hydrogen peroxide, bleomycin, and ethyl methansulfonate.

Conclusions: The results of this study do not support the notion that CGG trinucleotide expansion in fragile X syndrome is caused by permanent deficiency in DNA repair.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources