Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 15;399(2):232-8.
doi: 10.1006/abbi.2002.2772.

Cloning and characterization of an S-formylglutathione hydrolase from Arabidopsis thaliana

Affiliations

Cloning and characterization of an S-formylglutathione hydrolase from Arabidopsis thaliana

Sandra Kordic et al. Arch Biochem Biophys. .

Abstract

A cDNA from Arabidopsis thaliana resembling S-formylglutathione hydrolase (SFGH), an enzyme with putative roles in formaldehyde detoxification in animals and microorganisms, has been cloned and expressed in Escherichia coli. The purified recombinant Arabidopsis enzyme (AtSFGH) was a dimer composed of 31-kDa subunits. Like SFGHs from other sources, AtSFGH had thioesterase activity toward S-formylglutathione and carboxyesterase activity toward 4-methylumbelliferyl acetate. Unlike other SFGHs, the enzyme from Arabidopsis actively hydrolyzed S-acetylglutathione. AtSFGH activity was inhibited by heavy metals and sulfhydryl alkylating agents, but was insensitive to serine hydrolase inhibitors, suggesting that the enzyme was a cysteine-dependent hydrolase. Although Atsfgh transcripts were determined in plants and cultures of Arabidopsis, the respective enzyme could not be detected in planta after the esterase activities present were resolved using isoelectric focusing. Instead, Arabidopsis contained several carboxyesterases active toward alpha-naphthyl acetate, which were all sensitive to inhibition by the serine hydrolase inhibitor paraoxon.

PubMed Disclaimer

Publication types