Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 1;185(1):75-81.
doi: 10.1007/s00232-001-0112-3. Epub 2002 Feb 5.

Chloride conductance determining membrane potential of rabbit articular chondrocytes

Affiliations

Chloride conductance determining membrane potential of rabbit articular chondrocytes

K Tsuga et al. J Membr Biol. .

Abstract

Membrane conductance of cultured rabbit articular chondrocytes was characterized by means of the patch-clamp technique. The resting membrane potential of the articular chondrocytes was about -42 mV. The membrane potential shifted in accordance with the prediction by the Nernst equation for Cl- when intracellular and extracellular concentrations of Cl- were changed. On the other hand, change in extracellular concentration of K+ produced no shift in the membrane potential of chondrocytes. The Cl- channel blocker 4-acetamido-4'-isothiocyanatostilbene-2'2-disulfonic acid (SITS) depolarized the membrane potential. These findings suggest that the membrane potential of the chondrocytes is determined mainly by Cl- conductance. Using the cell-attached patch-clamp method, a large unitary conductance of 217 pS was observed in the articular chondrocytes. The unitary current was reversibly blocked by SITS. Therefore, the unitary current was carried by Cl-. The Cl- channel showed voltage-dependent activation and the channels exhibited long-lasting openings. Therefore, the membrane potential of rabbit cultured articular chondrocytes was mainly determined by the activities of the large-conductance and voltage-dependent Cl- channels.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources