Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001;1(4):300-10.
doi: 10.1002/tcr.1015.

The biosynthesis of acarbose and validamycin

Affiliations
Review

The biosynthesis of acarbose and validamycin

T Mahmud et al. Chem Rec. 2001.

Abstract

The studies reported here have established the biosynthetic origin of the mC7N units of acarbose and validamycin from sedo-heptulose 7-phosphate, and have identified 2-epi-5-epi-valiolone as the initial cyclization product. The deoxyhexose moiety of acarbose arises from glucose with deoxythymidyl-diphospho-4-keto-6-deoxy-D-glucose (dTDP-4-keto-6-deoxy-D-glucose) as a proximate intermediate. However, despite the identical origin of the aminocyclitol moieties in acarbose and validamycin A, the pathways of their formation seem to be substantially different. Validamycin A formation involves a number of discrete ketocyclitol intermediates, 5-epi-valiolone, valienone, and validone, whereas no free intermediates have been identified on the pathway from 2-epi-5-epi-valiolone to the pseudodisaccharide moiety of acarbose. The stage is now set for unraveling the mechanism or mechanisms by which the two components of the pseudodisaccharide moieties of acarbose and validamycin are uniquely coupled to each other via a nitrogen bridge.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources