Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans
- PMID: 11893526
- DOI: 10.1016/s1043-2760(02)00567-2
Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans
Abstract
In humans, aromatase P450, which catalyses conversion of C(19)-steroids to estrogens, is expressed in several tissues, including gonads, brain, adipose tissue, skin and placenta, and is encoded by a single-copy gene (CYP19); however, this does not hold true for all species. The human gene is approximately 130 kb and its expression is regulated, in part, by tissue-specific promoters and by alternative splicing mechanisms. Using transgenic mouse technology, it was observed that ovary-, adipose tissue- and placenta-specific expression of human CYP19 is directed by relatively small segments of DNA within 500 bp upstream of each of the tissue-specific first exons. Thus, the use of alternative promoters allows greater versatility in tissue-specific regulation of CYP19 expression. Characterization and identification of transcription factors and crucial cis-acting elements within genomic regions that direct tissue-specific expression will contribute to improved understanding of the regulation of CYP19 expression in the tissues that synthesize estrogens under both physiological and pathophysiological conditions.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
