Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;282(4):H1255-61.
doi: 10.1152/ajpheart.00598.2001.

Cellular glutathione peroxidase deficiency and endothelial dysfunction

Affiliations
Free article

Cellular glutathione peroxidase deficiency and endothelial dysfunction

Marc A Forgione et al. Am J Physiol Heart Circ Physiol. 2002 Apr.
Free article

Abstract

Cellular glutathione peroxidase (GPx-1) is the most abundant intracellular isoform of the GPx antioxidant enzyme family. In this study, we hypothesized that GPx-1 deficiency directly induces an increase in vascular oxidant stress, with resulting endothelial dysfunction. We studied vascular function in a murine model of homozygous deficiency of GPx-1 (GPx-1(-/-)). Mesenteric arterioles of GPx-1(-/-) mice demonstrated paradoxical vasoconstriction to beta-methacholine and bradykinin, whereas wild-type (WT) mice showed dose-dependent vasodilation in response to both agonists. One week of treatment of GPx-1(-/-) mice with L-2-oxothiazolidine-4-carboxylic acid (OTC), which increases intracellular thiol pools, resulted in restoration of normal vascular reactivity in the mesenteric bed of GPx-1(-/-) mice. We observed an increase of the isoprostane iPF(2alpha)-III, a marker of oxidant stress, in the plasma and aortas of GPx-1(-/-) mice compared with WT mice, which returned toward normal after OTC treatment. Aortic sections from GPx-1(-/-) mice showed increased binding of an anti-3-nitrotyrosine antibody in the absence of frank vascular lesions. These findings demonstrate that homozygous deficiency of GPx-1 leads to impaired endothelium-dependent vasodilator function presumably due to a decrease in bioavailable nitric oxide and to increased vascular oxidant stress. These vascular abnormalities can be attenuated by increasing bioavailable intracellular thiol pools.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources