Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001:85:250-6.

[Role of podocyte damage in the pathogenesis of glomerulosclerosis and tubulointerstitial lesions: findings in the growth hormone transgenic mouse model of progressive nephropathy]

[Article in German]
Affiliations
  • PMID: 11894406

[Role of podocyte damage in the pathogenesis of glomerulosclerosis and tubulointerstitial lesions: findings in the growth hormone transgenic mouse model of progressive nephropathy]

[Article in German]
R Wanke et al. Verh Dtsch Ges Pathol. 2001.

Abstract

The sequence of structural changes terminating in glomerulosclerosis, tubular atrophy and interstitial fibrosis was analyzed in the growth hormone (GH) transgenic mouse (TM) model of progressive renal disease. The investigation was performed in TM expressing the bovine GH gene under the control of the murine metallothionein-1-promoter and non-transgenic controls (CM) of different age groups. The kidneys were studied by light microscopy, transmission and scanning electron microscopy, and were analyzed with stereological methods. Early-stage renal lesions were characterized by glomerular hypertrophy and mesangial expansion. In 7-week-old TM the mean glomerular volume was twice that of age-matched CM. The number of endothelial and of mesangial cells per glomerulus was increased in TM vs. CM, while the number of podocytes did not change. The podocytes demonstrated hypertrophy and foot process effacement. Concomitant with an age-related further increase of glomerular size in TM, severe maladaptive podocyte lesions including detachment of podocytes were observed. The resultant denudation of the glomerular basement membrane was associated with severe proteinuria, glomerular hyalinosis, synechia formation and collapse of glomerular capillaries. These lesions progressed to glomerular obsolescence that was associated with atrophy of the adjacent tubule and interstitial fibrosis. The progressive kidney lesions in this model appear to be attributable to a considerable extent to podocyte damage resulting from the limited capacity of this cell type to keep up with progressing overall tuft growth. The findings provide further evidence that mature podocytes are unable for effective cell replication in vivo, and that podocyte damage plays a significant role in the pathogenesis of progressive glomerulosclerosis with tubular atrophy and interstitial fibrosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types