Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Mar;8(3):878-84.

Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy

Affiliations
  • PMID: 11895922
Comparative Study

Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy

Ian F Tannock et al. Clin Cancer Res. 2002 Mar.

Abstract

Purpose: Potential causes of drug resistance in solid tumors include genetically determined factors expressed in individual cells and those related to the solid tumor environment. Important among the latter is the requirement for drugs to penetrate into tumor tissue and to achieve a lethal concentration in all of the tumor cells. The present study was designed to characterize further the multicellular layer (MCL) method for studying drug penetration through tumor tissue and to provide information about tissue penetration for drugs used commonly in the treatment of human cancer.

Experimental design: EMT-6 mouse mammary and MGH-U1 human bladder cancer cells were grown on collagen-coated semiporous Teflon membranes to form MCLs approximately 200 microm thick. The properties of MCLs were compared with those of tumors grown in mice from the same cells. The penetration of drugs through the MCL was evaluated by using radiolabeled drugs or analytical methods.

Results: The MCL developed an extracellular matrix containing both laminin and collagen, although there were some differences in expression of extracellular matrix proteins. Electron microscopy showed rare desmosomes in both MCL and tumors. The penetration of cisplatin, etoposide, gemcitabine, paclitaxel, and vinblastine through tissue in the MCL was slow compared with penetration through the Teflon support membrane alone.

Conclusions: Our results suggest limited ability of anticancer drugs to reach tumor cells that are distant from blood vessels. The limited penetration of anticancer drugs through tumor tissue may be an important cause of clinical resistance of solid tumors to chemotherapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms