Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 28;21(10):1600-10.
doi: 10.1038/sj.onc.1205231.

Deregulated c-Myc prematurely recruits both Type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation

Affiliations

Deregulated c-Myc prematurely recruits both Type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation

Arshad Amanullah et al. Oncogene. .

Abstract

Previously we have reported that deregulated expression of c-myc in normal and leukemic myeloid cells blocked differentiation and, concomitantly, induced p53-independent apoptosis. Here, we show that this morbidity was due to premature recruitment of the Fas/CD95 cell death pathway which normally operates to induce apoptosis at the end of the terminal myeloid differentiation program. Analysis of the regulated components of this pathway revealed that IL6-mediated induction of differentiation resulted in rapid cell surface expression of CD95 receptor. Deregulated c-myc prevented the downregulation of CD95 ligand by maintaining its transcription, but caused premature downregulation of c-FLIP. First, the Type II (mitochondria-dependent, bcl-2-sensitive) and, then, the Type I (mitochondria-independent, bcl-2-insensitive) pathway were activated. Stable exogenous c-FLIP expression completely rescued the apoptotic phenotype. Furthermore, when the deregulated c-myc transgene was stably transduced into bone marrow cells from Fas(lpr/lpr) (CD95 receptor mutant) and FasL(gld/gld) (CD95 ligand mutant) mice, cell death was significantly suppressed relative to c-myc-transduced wild type bone marrow cells upon induction of differentiation. These data indicate that c-myc-mediated apoptosis associated with blocks in myeloid differentiation is dependent on the Fas/CD95 pathway. Our findings offer important new insights into understanding how deregulated c-myc alters normal blood cell homeostasis, and how additional mutations might promote leukemogenesis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources