Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 25;41(6):1534-44.
doi: 10.1021/ic0107227.

Ruthenium-manganese complexes for artificial photosynthesis: factors controlling intramolecular electron transfer and excited-state quenching reactions

Affiliations

Ruthenium-manganese complexes for artificial photosynthesis: factors controlling intramolecular electron transfer and excited-state quenching reactions

Malin L A Abrahamsson et al. Inorg Chem. .

Abstract

Continuing our work toward a system mimicking the electron-transfer steps from manganese to P(680)(+) in photosystem II (PS II), we report a series of ruthenium(II)-manganese(II) complexes that display intramolecular electron transfer from manganese(II) to photooxidized ruthenium(III). The electron-transfer rate constant (k(ET)) values span a large range, 1 x 10(5)-2 x 10(7) s(-1), and we have investigated different factors that are responsible for the variation. The reorganization energies determined experimentally (lambda = 1.5-2.0 eV) are larger than expected for solvent reorganization in complexes of similar size in polar solvents (typically lambda approximately 1.0 eV). This result indicates that the inner reorganization energy is relatively large and, consequently, that at moderate driving force values manganese complexes are not fast donors. Both the type of manganese ligand and the link between the two metals are shown to be of great importance to the electron-transfer rate. In contrast, we show that the quenching of the excited state of the ruthenium(II) moiety by manganese(II) in this series of complexes mainly depends on the distance between the metals. However, by synthetically modifying the sensitizer so that the lowest metal-to-ligand charge transfer state was localized on the nonbridging ruthenium(II) ligands, we could reduce the quenching rate constant in one complex by a factor of 700 without changing the bridging ligand. Still, the manganese(II)-ruthenium(III) electron-transfer rate constant was not reduced. Consequently, the modification resulted in a complex with very favorable properties.

PubMed Disclaimer

LinkOut - more resources