Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Feb 21;54(2):191-202.
doi: 10.1016/s0169-409x(02)00016-9.

Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations

Affiliations
Review

Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations

R T Liggins et al. Adv Drug Deliv Rev. .

Abstract

A number of hypersensitivity reactions have been attributed to the presence of Cremophor((R)) EL in the current formulation for paclitaxel. This has led to the development of formulations for paclitaxel employing polyether-polyester diblock copolymers as micelle forming carriers. Diblock copolymers of methoxypolyethylene glycol-block-poly(D,L-lactide) (MePEG:PDLLA) were synthesized from monomers of D,L-lactide and MePEG by a ring opening bulk polymerization in the presence of stannous octoate. Up to 25% paclitaxel could be loaded into matrices of MePEG:PDLLA (60:40, MePEG molecular weight of 2000) using the solution casting method. Dissolution of paclitaxel/copolymer matrices in aqueous media resulted in complete solubilization of paclitaxel within the hydrophobic PDLLA core of the micelles. This review article describes the synthetic reaction conditions influencing the degree of conversion of monomer to copolymer, thermal properties, critical micelle concentrations of copolymers, methods of incorporation of paclitaxel into copolymer matrices and subsequent constitution in aqueous media and biological evaluations of micellar paclitaxel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources