Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr 1:7:d843-52.
doi: 10.2741/trafford.

Integrative analysis of calcium signalling in cardiac muscle

Affiliations
Review

Integrative analysis of calcium signalling in cardiac muscle

Andrew W Trafford et al. Front Biosci. .

Abstract

This review discusses the control of the amplitude of the cardiac systolic Ca transient. The Ca transient arises largely from release from the sarcoplasmic reticulum (SR). Release is triggered by calcium-induced calcium release (CICR) whereby the entry of a small amount of Ca on the L-type Ca current, "the trigger", results in the release of much more Ca from the SR. There are three potential control points: (1) the Ca content of the SR; (2) the properties of the SR Ca release channel or ryanodine receptor (RyR); (3) the amplitude of the L-type Ca current. The data reviewed show that the Ca content of the SR has pronounced effects on systolic [Ca2+]i and, reciprocally, the amount of Ca released from the SR affects sarcolemmal Ca fluxes thereby "autoregulating" SR content. Modulation of the ryanodine receptor has no steady-state effect due to compensating changes of SR Ca content. An increase of the L-type Ca current results in an abrupt increase of systolic [Ca2+]i with little change of SR content. This is because of a coordinated increase of both the trigger and loading function of the Ca current. These results emphasise the importance of considering all aspects of Ca handling in the context of SR Ca release and thus the regulation of the systolic Ca transient and contraction in cardiac muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources