Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;30(1):157-60.
doi: 10.1097/00003246-200201000-00022.

Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution

Affiliations

Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution

Thomas J Morgan et al. Crit Care Med. 2002 Jan.

Abstract

Objectives: To determine the relationship between the strong ion difference (SID) of a diluting crystalloid and its metabolic acid-base effects on in vitro blood dilution.

Design: Prospective in vitro study.

Setting: University research laboratory.

Subjects: Normal human blood.

Interventions: Three solutions were prepared, each with [Na] 140 mmol/L. [Cl-] for solutions 1, 2, and 3 was 120, 110, and 100 mmol/L, respectively, the other anion being HCO3-. SID values were thus 20, 30, and 40 mEq/L, respectively. Serial dilutions of well-oxygenated fresh venous blood were performed anaerobically by using each of solutions 1-3 as well as 0.9% saline (SID = 0 mEq/L) and Hartmann's solution (SID = -4 mEq/L).

Measurements and main results: Blood gas and electrolyte analyses were performed before and after each dilution. Apart from dilutions with solution 3 (crystalloid SID 40 mEq/L) during which plasma SID did not change, plasma SID decreased during hemodilution. In contrast, base excess increased during hemodilution with solutions 3 and 2 (crystalloid SID 40 mEq/L and 30 mEq/L, respectively) and decreased only with the remaining three solutions. The relationships between hemoglobin concentrations and both plasma SID and whole blood base excess throughout dilution were linear, with slopes proportional to the SID of the diluent in each case. Linear regression revealed that the SID of crystalloid producing a zero base excess/hemoglobin concentration slope during blood dilution (i.e., no change in metabolic acid-base status) is 23.7 mEq/L.

Conclusions: On in vitro hemodilution, there is a simple linear relationship between diluent crystalloid SID and the rate and direction of change of plasma SID and whole blood base excess. Direct extrapolation to in vivo situations such as acute normovolemic hemodilution and large volume correction of extracellular fluid deficits requires experimental confirmation.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources